Wave intensity in the ascending aorta: effects of arterial occlusion.
نویسندگان
چکیده
We examine the effects of arterial occlusion on the pressure, velocity and the reflected waves in the ascending aorta using wave intensity analysis. In 11 anaesthetised, open-chested dogs, snares were used to produce total arterial occlusion at 4 sites: the upper descending aorta at the level of the aortic valve (thoracic); the lower thoracic aorta at the level of the diaphragm (diaphragm); the abdominal aorta between the renal arteries (abdominal) and the left iliac artery, 2 cm downstream from the aorta iliac bifurcation (iliac). Pressure and flow in the ascending aorta were measured, and data were collected before and during the occlusion. During thoracic and diaphragm occlusions a significant increase in mean aortic pressure (46% and 23%) and in wave speed (25% and 10%) was observed, while mean flow rate decreased significantly (23% and 17%). Also, the reflected compression wave arrived significantly earlier (45% and 15%) and its peak intensity was significantly greater (257% and 125%), all compared with control. Aortic occlusion distal to the renal arteries, however, caused an indiscernible change in the pressure and velocity waveforms, and in the intensities and timing of the waves in the forward and backward directions. The measured pressure and velocity waveforms are the result of the interaction between the heart and the arterial system. The separated pressure, velocity and wave intensity are required to provide information about arterial hemodynamic such as the timing and magnitude of the forward and backward waves. The net wave intensity is simpler to calculate but provides information only about the predominant direction of the waves and can be misleading when forward and backward waves of comparable magnitudes are present simultaneously.
منابع مشابه
Local and regional wave speed in the aorta: effects of arterial occlusion.
Arterial wave speed is widely used to determine arterial distensibility and has been utilised as a surrogate marker for vascular disease. A comparison between the results of the traditional foot-to-foot method for measuring wave speed to those of the pressure-velocity loop (PU-loop) method is one of the primary objectives of this paper. We also investigate the regional wave speed along the aort...
متن کاملReservoir and reservoir-less pressure effects on arterial waves in the canine aorta.
BACKGROUND A time-domain approach to couple the Windkessel effect and wave propagation has been recently introduced. The technique assumes that the measured pressure in the aorta (P) is the sum of a reservoir pressure (Pr), due to the storage of blood, and an excess pressure (Pe), due to the waves. Since the subtraction of Pr from P results in a smaller component of Pe, we hypothesized that usi...
متن کاملNovel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections
We present a novel analysis of arterial pulse wave propagation that combines traditional wave intensity analysis with identification of Windkessel pressures to account for the effect on the pressure waveform of peripheral wave reflections. Using haemodynamic data measured in vivo in the rabbit or generated numerically in models of human compliant vessels, we show that traditional wave intensity...
متن کاملArterial functions: how to interpret the complex physiology.
Arterial pressure is a cyclic phenomenon characterized by a pressure wave oscillating around the mean blood pressure, from diastolic to systolic blood pressure, defining the pulse pressure. Aortic input impedance is a measure of the opposition of the circulation to an oscillatory flow input (stroke volume generated by heart work). Aortic input impedance integrates factors opposing LV ejection, ...
متن کاملWave intensity analysis in the ventricles , carotid and coronary arteries – What has been learnt during the last 25 years ? : Part 2
the temporal changes in pressure and flow generated during every cardiac cycle are inextricably linked and propagate as waves along the vascular tree. these waves get reflected at sites where changes in vascular geometry and/or elastic properties occur. wave intensity analysis (wIA) was introduced approximately 25 years ago for the study of arterial wave travel1-3, and has since been establishe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 38 4 شماره
صفحات -
تاریخ انتشار 2005